Emerging Patterns In The Isotopic Composition Of Soil CO2 Concentrations, Soil CO2 Production, And Soil-Atmosphere CO2 Exchange At The Watershed Scale: On The Intersection Between Hydrology And Biology In The Critical Zone

Tuesday, 16 December 2014
Diego A Riveros-Iregui, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States, Liyin Liang, University of California Riverside, Riverside, CA, United States and Theresa Marie Lorenzo, University of Nebraska-Lincoln, Lincoln, NE, United States
Stable isotopes are commonly used to understand how physical and biological processes mediate the exchange of carbon between terrestrial ecosystems and the atmosphere. Numerous studies have described fundamental relationships between environmental variables, the carbon isotopic composition (δ13C) of recently assimilated sugars in plants, litter, soil carbon, or recently respired CO2. However, studies that examine the spatial variability of the 13C content of forest soils at the landscape scale are lacking. We report on measurements of the carbon isotopic composition of soil CO2 concentrations (δ13CC), soil CO2 production (δ13CP), and soil-atmosphere CO2 exchange (δ13CD) across a subalpine forest of the northern Rocky Mountains of Montana over two growing seasons. We evaluate the variability of these measurements across different landscape positions. Our analysis demonstrates that soil moisture and the lateral redistribution of soil water are strong predictors of the spatial variability of δ13CC, δ13CP, and δ13CD at the watershed scale. We suggest that there are concomitant yet independent effects of soil water on physical (i.e., soil gas diffusivity) and biological (i.e., photosynthetic activity) processes that mediate the 13C composition of forest soils. We show systematic spatial variability in the δ13C of forest soils at the landscape scale that can be useful to accurately predict and model land-atmosphere CO2 exchange over complex terrain.