A Linkage of Recent Arctic Summer Sea Ice and Snowfall Variability of Japan

Wednesday, 17 December 2014
Katsushi Iwamoto1,2, Meiji Honda2 and Jinro Ukita2, (1)NIPR National Institute of Polar Research, Tokyo, Japan, (2)Niigata University, Niigata, Japan
In spite of its mid-latitude location, Japan has a markedly high amount of snowfall, which owes much to the presence of cold air-break from Siberia and thus depends on the strength of the Siberian high and the Aleutian low. With this background this study examines the relationship between interannual variability and spatial patterns of snowfall in Japan with large-scale atmospheric and sea ice variations.

The lag regression map of the winter snowfall in Japan on the time series of the Arctic SIE from the preceding summer shows a seesaw pattern in the snowfall, suggesting an Arctic teleconnection to regional weather. From the EOF analyses conducted on the snowfall distribution in Japan, we identify two modes with physical significance. The NH SIC and SLP regressed on PC1 show a sea ice reduction in the Barents and Kara Seas and anomalous strength of the Siberia high as discussed in Honda et al. (2009) and other studies, which support the above notion that the snowfall variability of Japan is influenced by Arctic sea ice conditions. Another mode is related to the AO/NAO and the hemispheric scale double sea-ice seesaw centered over the sub-Arctic region: one between the Labrador and Nordic Seas in the Atlantic and the other between the Okhotsk and Bering Seas from the Pacific as discussed in Ukita et al. (2007). Together, observations point to a significant role of the sea-ice in determining mid-latitude regional climate and weather patterns.