S53C-4520:
Imaging of early acceleration phase of the 2013-2014 Boso slow slip event
Friday, 19 December 2014
Junichi Fukuda1, Aitaro Kato2, Kazushige Obara1, Satoshi Miura3 and Teruyuki Kato1, (1)Earthquake Research Institute, University of Tokyo, Tokyo, Japan, (2)Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan, (3)Graduate School of Science, Tohoku University, Sendai, Japan
Abstract:
Based on GPS and seismic data, we examine the spatiotemporal evolution of a slow slip event (SSE) and associated seismic activity that occurred off the Boso peninsula, central Japan, from December 2013 to January 2014. We use GPS data from 71 stations of the GEONET and 6 stations operated by Earthquake Research Institute of the University of Tokyo and Tohoku University around the Boso peninsula. We apply a modified version of the Network Inversion Filter to the GPS time series at the 77 stations to estimate the spatiotemporal evolution of daily cumulative slip and slip rate on the subducting Philippine Sea plate. In addition, we create an improved earthquake catalog by applying a matched filter technique to continuous seismograms and examine the spatiotemporal relations between slow slip and seismicity. We find that the SSE started in early December 2013. The spatiotemporal evolution of slow slip and seismicity is divided into two distinct phases, an earlier slow phase from early to 30 December 2013 (Phase I) and a subsequent faster phase from 30 December 2013 to 9 January 2014 (Phase II). During Phase I, slip accelerated slowly up to a maximum rate of 1.6 m/yr with potentially accelerating along-strike propagation at speeds on the order of 1 km/day or less and no accompanying seismicity. On the other hand, during Phase II, slip accelerated rapidly up to a maximum rate of 4.5 m/yr and then rapidly decelerated. The slip front propagated along strike at a constant speed of ~10 km/day. During the Phase II, slow slip was accompanied by seismic swarm activity that was highly correlated in space and time with slip rate, suggesting that the swarm activity was triggered by stress loading due to slow slip. Early slow acceleration of slip has not been identified in the past Boso SSEs in 1996, 2002, 2007, and 2011. It is not clear at this point whether the past Boso SSEs started with slow acceleration similarly to the 2013-2014 SSE. The transition from the slow to the faster phase shares some similarities with the nucleation of megathrust earthquakes inferred from foreshock activities, suggesting that SSEs may provide insights into the nucleation of large earthquakes.