S41E-03:
Long-period Ground Motion Simulation in the Osaka Basin during the 2011 Great Tohoku Earthquake

Thursday, 18 December 2014: 8:30 AM
Tomotaka Iwata1, Hisahiko Kubo1, Kimiyuki Asano1, Kayoko Sato2 and Shin Aoi3, (1)Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan, (2)KEPCO, Osaka, Japan, (3)NIED National Research Institute for Earth Science and Disaster Prevention, Tsukuba, Japan
Abstract:
Large amplitude long-period ground motions (1-10s) with long duration were observed in the Osaka sedimentary basin during the 2011 Tohoku earthquake (Mw9.0) and its aftershock (Ibaraki-Oki, Mw7.7), which is about 600 km away from the source regions. Sato et al. (2013) analyzed strong ground motion records from the source region to the Osaka basin and showed the following characteristics. (1) In the period range of 1 to 10s, the amplitude of horizontal components of the ground motion at the site-specific period is amplified in the Osaka basin sites. The predominant period is about 7s in the bay area where the largest pSv were observed. (2) The velocity Fourier amplitude spectra with their predominant period of around 7s are observed at the bedrock sites surrounding the Osaka basin. Those characteristics were observed during both of the mainshock and the largest aftershock. Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. They simulated ground motions due to the largest aftershock as a simple point source model using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). They used a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012), with the minimum effective period of the computation of 3s. Their simulation result reproduced the observation characteristics well and it validates the applicability of the JIVSM for the long period ground motion simulation. In this study, we try to simulate long-period ground motions during the mainshock. The source model we used for the simulation is based on the SMGA model obtained by Asano and Iwata (2012). We succeed to simulate long-period ground motion propagation from Kanto area to the Osaka basin fairly well. The long-period ground motion simulations with the several Osaka basin velocity structure models are done for improving the model applicability.

We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, Osaka city waterworks bureau, and Osaka prefecture. GMS provided by NIED is used for the computation.