Modeling Runoff from Partially Glacierized Catchments in the Tropical Andes with Different Glacier Coverage and Land Cover Conditions

Thursday, 18 December 2014
Tsuyoshi Kinouchi1, Javier Mendoza2, José Luna2 and Yoshihiro Asaoka3, (1)Tokyo Institute of Technology, Tokyo, Japan, (2)Universidad Mayor de San Andrés, La Paz, Bolivia, (3)Tohoku University, Sendai, Japan
In Bolivian Andes, retreats of tropical glaciers are rapid, thus water resources currently available from glacierized catchments for drinking, agriculture, industry and hydropower would be changed in its volume and variations due to changing climate. Water resources in La Paz and El Alto, the capital city areas of Bolivia, strongly depend on the runoff from partially glacierized catchments located in the Cordillera Real, which is a combined contribution of surface and subsurface flow from glacierized and non-glacierized areas due to rainfall, snow melt and glacier melt. To predict the long-term availability of water resources for the capital city areas, we developed a semi-distributed conceptual glacio-hydrological model that considers various runoff pathways from partially glacierized high-altitudinal catchments located in the outer tropics. In the model, the retarding effect of lakes and wetlands was considered, based on the observed hydraulic functions and distribution of wetlands. The model was applied to three sub-catchments of the Tuni Lake watershed (98km2), from which the water resources for La Paz and El Alto are supplied. With calibrated parameters, the model reproduced well the observed seasonal variations of daily runoff during recent two years. Simulated results of water balance suggested that for the catchment with a larger glacier cover, more than 40% of the annual total runoff is contributed from glacierized areas due to glacier melt and snowmelt. The contribution from glacierized areas in other two sub-catchments, with relatively smaller areas covered by glacier ice, was calculated to be between 10-15%. We found that the role of wetlands and lakes are essential in retarding and regulating the runoff from partially glacierized high-mountain catchments.