Novel System for Continuous Measurements of Dissolved Gases in Liquids

Monday, 15 December 2014
Douglas S Baer, Jimmy Liem, Thomas G Owano and Manish Gupta, Los Gatos Research, Mountain View, CA, United States
Measurements of dissolved gases in lakes, rivers and oceans may be used to quantify underwater greenhouse gas generation, air-surface exchange, and pollution migration. Studies involving quantification of dissolved gases typically require obtaining water samples (from streams, lakes, or ocean water) and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line, discrete-sample methodology is time consuming and labor intensive, and thus severely inhibits detailed spatial and temporal mapping of dissolved gases.

In this work, we describe the commercial development of a new portable membrane-based gas extraction system (18.75” x 18.88” x 10.69”, 16 kg, 85 watts) that interfaces directly to our cavity enhanced laser absorption based (or Off-Axis ICOS) gas analyzers to continuously and quickly measure concentrations and isotope ratios of dissolved gases. By accurately controlling the water flow rate through the membrane contactor, gas pressure on the outside and water pressure on the inside of the membrane, the system can generate precise and highly reproducible results. Furthermore, the gas-phase mole fractions (parts per million, ppm) may be converted into dissolved gas concentrations (nM), by accurately measuring the gas flow rates in and out of the extraction system.

We will present detailed laboratory test data that quantifies the performance (linearity, precision, and dynamic range) of the system for measurements of the concentrations and isotope ratios of dissolved greenhouse gases (methane, carbon dioxide, and nitrous oxide) continuously and in real time.