B13L-06:
Forest Carbon Cycling Across Gradients of Disturbance Severity: Patterns and Underlying Mechanisms
Abstract:
Ecological disturbances alter biogeochemical processes central to forest carbon (C) storage. Disturbances to forests occur along a continuum of severity, from low intensity disturbance causing the mortality of only a subset of trees to severe stand-replacing disturbance that kills all trees; yet, considerable uncertainty exists in how and why the forest C cycle changes across gradients of disturbance intensity, and whether ecosystem models robustly simulate these responses.At the University of Michigan Biological Station, we are using multiple ecosystem-scale experiments to examine how disturbance intensity affects C cycling and to identify the underlying mechanisms that support recovery of the C cycle. The Forest Accelerated Succession Experiment (FASET), in which a third of all canopy trees were stem girdled within a 39 ha area, employs C cycling measurements within paired treatment and control meteorological flux tower footprints. A separate study examines forest C cycling following stand-replacing clear-cut harvest and fire.
We found that net ecosystem production (NEP) was highly resilient following moderate disturbance, but experienced long-term reductions following stand-replacing disturbance. Using a gradient of disturbance severity within the FASET treatment, we found that forest production declined non-linearly with rising disturbance intensity, remaining stable until a threshold of ~60 % tree mortality was exceeded. NEP was sustained following moderate disturbance because of improved canopy light-use efficiency, which compensated for a temporary reduction in leaf area index. Contrastingly, NEP was reduced for several decades at the highest levels of disturbance severity. A model assessment revealed that neither big-leaf nor gap models captured the observed high resilience in NEP following low intensity disturbance, suggesting inadequate representation of the mechanisms supporting C cycling resilience.