OS51E-06:
Influence of Geologic Setting on the Morphology, Mineralogy, and Geochemistry of Vent Deposits Along the Eastern Lau Spreading Center and Valu Fa Ridge
Abstract:
Establishment of links between lithology, vent fluid chemistry, and vent deposit characteristics along the Eastern Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) was made possible using deep submergence vehicles and technology. ROV Jason was used to collect ultrahigh-resolution (submeter) bathymetric data sufficient to quantify characteristics of volcanic, tectonic and hydrothermal features; differences within vent fields from north to south include a change from low-relief volcanic domes cut by faults and fissures to higher aspect ratio volcanic domes dominated by aa-type lava morphologies (Ferrini et al., G-cubed, 2008). Highest temperature fluids are associated with crosscutting faults at all but Mariner vent field where faults are not observed.The detailed maps were used to target areas within vent fields for observations and sampling. Vent deposit morphologies are similar at the northernmost vent fields (Kilo Moana, TowCam, Tahi Moana), with black smokers and diffusers present on branched edifices. Vent deposits at the more southerly ABE, Tui Malila and Mariner vent fields vary in morphology, despite similar substrate lithology. Examples include abundant flanges at ABE and Tui Malila and ~20m-tall spires and squat barite-rich edifices at Mariner.
Geochemical analyses and petrographic observations document the influence of lithology, fluid temperature, pH, and extents of seawater mixing on deposit formation. Concentrations of As, which increase from north to south, reflect lithologic control. Sb, Pb, and Ba concentrations also reflect lithologic control, but are affected as well by low pH and/or extents of seawater mixing. The significant differences in Mariner deposits reflect formation from very high temperature, low pH (<3 vs >4) fluids that keep Zn in solution, combined with local subsurface mixing. Overall, results document the influence of the Tonga Subduction Zone on vent deposits through its affects on lithology and vent fluid composition.