NS21B-3878:
Fault Detection Using Polarimetric Single-Input-Multi-Output Ground Penetrating Radar Technique in Mason, Texas

Tuesday, 16 December 2014
Akhil Amara, Texas A & M University, College Station, TX, United States and Mark Edward Everett, Texas A & M Univ, College Station, TX, United States
Abstract:
At the Mason Mountain Wildlife Management Area (MMWMA) near Mason, Texas, we conducted a 2D ground penetrating radar (GPR) survey using single-input-multi-output (SIMO) acquisition technique to image a Pennsylvanian high-angle normal fault. At the MMWMA, the surface geology is mapped extensively but the subsurface remains largely unknown. The main objective of our study is to develop a detailed subsurface structural image of the fault and evaluate existing hypotheses on fault development. Also, to develop and apply a new methodology based on Polarimetric SIMO acquisition geometry. This new methodology allows the subsurface structures to be viewed simultaneously from different angles and can help reduce noise caused by the heterogeneities that affect the electromagnetic waves. We used a pulseEKKO pro 200 GPR with 200 MHz antennae to acquire 8 north-south lines across the fault. Each line is 30 meters long with the transmitter starting on the Town Mountain Granite, footwall, with the receiver stepping 40 cm until the end of the line crossing the fault on to the Hickory Sandstone, hanging wall. Each pass consisted of a stationary transmitter antenna and the moving receiver antenna. The data were initially processed with standard steps including low-cut dewow filter, background subtraction filter and gain control. Advanced processing techniques include migration, phased array processing, velocity analysis, and normal moveout. We will compare the GPR results with existing geophysical datasets at the same site, including electromagnetic (EM), seismic, and seismoelectric.