C43A-0365:
Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

Thursday, 18 December 2014
Keith N Musselman, University of Saskatchewan, Saskatoon, SK, Canada, Noah P Molotch, University of Colorado at Boulder, Geography / INSTAAR, Boulder, CO, United States and Steven A Margulis, UCLA, Los Angeles, AP, United States
Abstract:
We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 – 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 – 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least for elevations >3100 m. Interestingly, the dominant effect of warmer temperatures on snowmelt was a reduction in daily melt rates. The drier year was most sensitive to temperature changes with a greater decrease in the number of days with high melt rates. The results offer insight into the sensitivity of snowmelt processes to warmer temperatures in the Sierra Nevada.