Seismic Images of the Gulf Stream Front off the Coast of North Carolina from the 2014 ENAM Community Seismic Experiment

Thursday, 18 December 2014
Tanya M Blacic, Montclair State University, Montclair, NJ, United States
The Eastern North America Margin (ENAM) Community Seismic Experiment (CSE) is scheduled to collect on- and offshore active source seismic data including more than 2500 km of multichannel seismic (MCS) reflection profiles in the fall of 2014. The project was designed to address a wide array of questions related to the evolution and modification of the eastern North American rifted margin in conjunction with the arrival of the Earthscope transportable array on the US East Coast. The planned rifting-parallel profiles north and south of Cape Hatteras are expected to cross the front between the warm water of the Gulf Stream western boundary current and colder North Atlantic water providing the opportunity to image mesoscale features related to the front and their associated fine structure. Standard MCS data has been shown to be well-tuned to image ocean fine structure resulting from abrupt vertical changes in temperature and salinity in the ocean. Thus, the same seismic data that is collected to investigate the sub-seafloor geology can also be processed to image reflections in the water that reveal ocean processes with a horizontal resolution of ~10 m and vertical resolution of ~4 m. As an add-on to the ENAM CSE, 30 additional expendable bathythermographs and 3 conductivity temperature depth probes belonging to the University of Wyoming are planned for deployment during the collection of the MCS profiles resulting in an average hydrographic profile spacing of ~33 km. We present a first look at this new seismic oceanography data set providing 2-D images of ocean acoustic reflectivity correlated with closely spaced hydrographic measurements across the Gulf Stream front.