OS11C-03:
Atmospheric methane emissions along the western Svalbard margin

Monday, 15 December 2014: 8:30 AM
John Pohlman1, Jens Greinert2,3, Anna Silyakova2, Michael Casso1, Carolyn D Ruppel1, Jurgen Mienert2, Catherine Lund Myhre4 and Stefan Bunz2, (1)US Geological Survey, Woods Hole, MA, United States, (2)University of Tromsø, Centre for Arctic Gas Hydrates, Environment and Climate (CAGE), Tromsø, Norway, (3)GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, (4)Norwegian Institute for Air Research, Kjeller, Norway
Abstract:
Documented warming of intermediate waters by ~1oC over the past 30 years along the western Svalbard margin has been suggested as a driver of climate-change induced dissociation of marine methane hydrate. However, recent evidence suggests methane release from gas hydrate has been occurring for thousands of years near the upper limit of methane hydrate stability and that seasonal changes in bottom water temperature may be more important than longer-term warming of intermediate waters. Nevertheless, this area has been and remains an active area for researching the physical and climate controls of methane release from the seafloor, yet the amount of methane reaching the atmosphere (the ultimate climate driver) in this region is largely unknown. As part of the MOCA project led by the Norwegian Institute for Air Research (NILU), water column and atmospheric marine boundary layer methane data were collected in June 2014 aboard the R/V Helmer Hanssenduring a collaboration among CAGE at University of Tromsӧ, NILU, GEOMAR, and the USGS. The results provide a continuous record of surface methane concentration and carbon isotope data from continental slope sites near temperature-sensitive hydrate-bearing seeps along the shelf-break and upper slope, the deep-water pockmarked gas-venting Vestnesa Ridge and a shallow water seep area within the Forlandet moraine complex at the shelf. Surface water methane and associated data used to calculate sea-air fluxes were obtained with the cavity ring-down spectrometer-based USGS Gas Analysis System (USGS-GAS). Only the shallow seep site (~90 m water depth) had appreciable methane in surface waters. We conducted an exhaustive survey of this site, mapping the full extent of the surface methane plume. To provide three-dimensional constraints, we acquired 65 vertical dissolved methane profiles to delineate the vertical and horizontal extent of the subsurface methane plume. Using these data, we assess how effectively shallow arctic seeps transmit methane to the atmosphere by determining what fraction of methane in the geochemical plume is emitted to the atmosphere. We also compare the methane mass flux from the seep site to an adjacent section of the Prins Karls Forland coastal margin to constrain the relative importance of different types of high-latitude seafloor methane emissions.