H54B-06:
Monitoring Soil Hydraulic and Thermal Properties using Coupled Inversion of Time-lapse Temperature and Electrical Resistance Data
Abstract:
Evaluation of spatiotemporal dynamics of heat transport and water flow in terrestrial environments is essential for understanding hydrological and biogeochemical processes. Electrical resistance tomography has been increasingly well used for monitoring subsurface hydrological processes and estimating soil hydraulic properties through coupled hydrogeophysical inversion. However, electrical resistivity depends on a variety of factors such as temperature, which may limit the accuracy of hydrogeophysical inversion. The main objective of this study is to develop a hydrogeophysical inversion framework to enable the incorporation of nonisothermal processes into the hydrogeophysical inversion procedure, and use of this procedure to investigate the effect of hydrological controls on biogeochemical cycles in terrestrial environments.We developed the coupled hydro-thermal-geophysical inversion approach, using the iTOUGH2 framework. In this framework, the heat transport and water flow are simultaneously modeled with TOUGH2 code, which effectively accounts for the multiphase, multi-component and nonisothermal flow in porous media. A flexible approach is used to incorporate petrophysical relationships and uncertainty to link soil moisture and temperature with the electrical resistivity. The developed approach was applied to both synthetic and field case studies. At the DOE subsurface biogeochemistry field site located near Rifle CO, seasonal snowmelt delivers a hydrological pulse to the system, which in turn influences the cycles of nitrogen, carbon and other critical elements. Using the new approach, we carried out numerical inversion of electrical resistance data collected along a 100 m transect at the Rifle site, and compared the results with field investigations of the soil, vadose zone, including the capillary fringe, and groundwater, as well as temperature and tensiometer measurements. Preliminary results show the importance of accounting for nonisothermal conditions to reliably interpret electrical resistance measurements and to determine hydraulic and thermal properties that influence biogeochemical cycles.