IN11D-06:
NOAA GCOM-W1/AMSR2 Oceanic Environmental Products: Phase-2

Monday, 15 December 2014: 9:15 AM
Zorana Jelenak1, Suleiman Alsweiss2, Paul Chang3 and Jun Y Park3, (1)NOAA College Park, College Park, MD, United States, (2)Global Science and Technology Greenbelt, Greenbelt, MD, United States, (3)NOAA Science Center, College Park, MD, United States
Abstract:
Passive microwave radiometry is a special application of microwave communications technology for the purpose of collecting Earth’s electromagnetic radiation. With the use of radiometers onboard earth orbiting satellites, scientists are able to monitor the Earth’s environment and climate system on both short- and long-term temporal scales with near global coverage.

The Global Change Observation Mission (GCOM) is part of the Japanese Aerospace Exploration Agency (JAXA) broader commitment toward global and long-term observation of the Earth’s environment. GCOM consists of two polar orbiting satellite series, GCOM-W (Water) and GCOM-C (Climate), with 1-year overlap between them for inter-calibration.

AMSR2 onboard GCOM-W1 is a microwave radiometer system that measures dual polarized radiances at 6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz. It is a sun-synchronous orbiter that acquires microwave radiances by conically scanning the Earth’s surface at a nominal earth incidence angle of 55 degrees that results in a wide swath of 1450 km.

As a part of Joint Polar Satellite System (JPSS) program the National Oceanic and Atmospheric Administration (NOAA) GCOM-W1 product development and validation project will provide NOAA’s users access to critical geophysical products derived from AMSR-2. These products, which are detailed in NOAA’s JPSS Level 1 Requirements Document Supplement, include: microwave brightness temperature, total precipitable water, cloud liquid water, precipitation type/rate, sea surface temperature, and Sea Surface Wind Speed.

Phase-1 of the AMSR-2 project at NOAA included inter-calibration of AMSR-2 measured brightness temperatures with the Tropical Rainfall Measuring Mission Microwave Imager as the reference radiometer. The second phase of the project utilized the calibrated brightness temperatures in a robust Bayesian network to retrieve more accurate geophysical parameters over the ocean surface. It can handle retrievals even with missing channels and can be implemented in operational environment. One year worth of data (2013) was used to create profiles of AMSR-2 brightness temperatures and the corresponding geophysical parameters. The retrieved parameters were then validated with other models and satellite products to make sure they meet the requirements.