Wave statistics in a coastal focal zone

Monday, 15 December 2014: 4:00 PM
Tim T Janssen1, Thomas H C Herbers1, Douglas W Pearman2, Erik Van Ettinger1 and Pieter Bart Smit1, (1)Theiss Research, La Jolla, CA, United States, (2)Naval Postgraduate School, Monterey, CA, United States
Wave-current dynamics in wave focal zones in exposed coastal inlets and river mouths are still poorly understood. This is in part due to lack of observations, which are complicated due to the presence of energetic waves, strong (tidal) currents, dynamic seabed morphology, and often busy ship traffic. Conventional (fixed) instruments, such as buoys and bottom-mounted current or pressure sensors, are difficult to maintain in such areas, and the spatial variability of the wave field is difficult to capture with single point measurements, or even arrays of fixed measurements. In addition to the observational difficulties, the effects of e.g. current shear, wave blocking, statistical inhomogeneity [see Smit & Janssen, 2013, J. Phys. Ocean., 43, pp 1741-1758], and nonlinearity [see Janssen & Herbers, 2009, J. Phys Ocean., 39, pp 1948-1964] on wave statistics are not fully understood, not accounted for in operational stochastic wave models, and – as a consequence – often ignored. In this paper, we consider new observational data of waves approaching the Mouth of the Columbia River undergoing bottom refraction and strong wave-current interaction. The data were collected during the 2013 ONR RIVET experiment using an array of free drifting wave-current buoys. The Lagrangian instruments capture the spatial variability of the wave field in the inlet and, by deploying them in large ensembles, resolve the (inhomogeneous and nonlinear) wave statistics in the focal zone. We discuss the use of free-drifting instruments to measure wave statistics in a coastal wave focal zone, consider the observed effects of wave inhomogeneity, and show that non-Gaussian effects are important and affect extreme wave occurrences in the Mouth of the Columbia River.