Monitoring Changes in Moisture Load Using Elastic Displacements in the Vadose Zone

Wednesday, 17 December 2014
Larry C Murdoch, Clemson Univ, Clemson, SC, United States, Colby Joseph Thrash, Clemson University, Clemson, SC, United States, Leonid N Germanovich, Georgia Tech, Atlanta, GA, United States and Andrew Weinberg, Texas Water Development Board, Austin, TX, United States
Monitoring changes in mass over scales of several meters to hundreds of meters or more has many applications to characterization of the Critical Zone, including assessing changes in soil moisture, erosion or deposition of sediment, and melting or accumulation of snow or ice. A technique has been developed to monitor average changes in mass on those scales using continuous high-resolution measurements of displacement made with a vertical extensometer (called a DELTA extensometer). An increase of mass above the extensometer causes the soil to contract, which causes the extensometer to function similar to a weighing lysimeter.

DELTA extensometers have been deployed at field sites near Clemson, South Carolina, and in northern Texas. The extensometers in South Carolina are in saprolite derived from biotite gneiss, whereas the ones in Texas are in clayey silt underlying playas. The instruments are in the vadose zone at depths of 3m to 6m. Signals from co-located extensometers are remarkably similar, demonstrating reproducibility of the technique. The extensometers respond to loading from a person or vehicle, and this load is used to estimate the Young’s modulus of soil enveloping the extensometer. Displacement during small to moderate rainfalls is typically linear with the accumulated rain (~0.2 micron/mm of rain, for example). The displacement levels out during large rainfalls, potentially due to the onset of overland flow that would limit the water load during precipitation. This suggests that the onset of overland flow could be evaluated using this technique. Seasonal temperature fluctuations at the soil surface can penetrate to the depths of the extensometers causing displacement from thermal expansion and contraction. Thermal effects account for approximately 100 μm of displacement over an annual cycle at one instrument. It appears that much of the thermal signal can be removed by data analysis. Pore pressure changes in the vicinity of the extensometer can also affect displacement and we are currently measuring pressures in an effort to identify this component of the signal. At one of the Texas sites, a series of step-like compressions totally 100 microns accompanied several rainfalls as water accumulated and filled the playa.