AE31B-3413:
Effects of Small Electrostatic Fields on the Ionospheric Density Profile
Wednesday, 17 December 2014
Mohammad Ahmad Salem, Ningyu Liu and Hamid Rassoul, Florida Institute of Technology, Melbourne, FL, United States
Abstract:
It is well known that short-lived strong electric fields produced by natural lightning activities in tropospheric altitudes can significantly affect the upper atmosphere. This effect is directly evidenced by the production of transient luminous events (TLEs), such as sprites, jets, and elves. It has also been demonstrated that thunderstorms can modify ionospheric densities on a longer time scale, during which TLEs may or may not occur [e.g., Cheng and Cummer, GRL, 32, L08804, 2005; Han and Cummer, JGR, 115, A09323, 2010; Shao et al., Nat. Geosci., doi: 10.1038/NGEO1668, 2012]. In particular, according to Shao et al. [2012], the electron density at 75-80 km altitudes may be reduced by about 2-3 orders of magnitude. In this talk, we study the modification of the ionospheric density profile by small electrostatic fields that may exist in the upper atmosphere during a thunderstorm. A simplified ion chemistry model described by Liu [JGR, 117, A03308, 2012] has been used to conduct this study. The model is based on the one developed by Lehtinen and Inan [GRL, 34, L08804, 2007], which is in turn an improved version of the GPI model discussed in Glukhov et al. [JGR, 97, 16971, 1992]. According to this model, the charged particles can be grouped into five species: electrons, light negative ions, cluster negative ions, light positive ions, and cluster positive ions. In this chemistry model, the three-body electron attachment is the only process whose rate constant depends on the electric field, when it is below about one third of the conventional breakdown threshold field. We have compared various sources of the three-body attachment rate constant. The result shows that the rate constant increases linearly with the reduced electric field in the range of 0 to 0.1 Td, while decreases exponentially from 0.1 Td to about one third of the conventional breakdown threshold field. With this dependence, our modeling results indicate that under the steady-state condition, the nighttime electron density profile can be reduced by about 40% or enhanced by a factor of about 6 when the electric field varies in the aforementioned range.