IN31A-3714:
A Statistical Aggregation Engine for Climatology and Trend Analysis

Wednesday, 17 December 2014
David R Chapman, Columbia University of New York, Palisades, NY, United States, Tyler A Simon, University of Maryland Baltimore County, Baltimore, MD, United States and Milton Halem, University of Maryland Baltimore County, Computer Science, Baltimore, MD, United States
Abstract:
Fundamental climate data records (FCDRs) from satellite instruments often span tens to hundreds of terabytes or even petabytes in scale. These large volumes make it difficult to aggregate or summarize their climatology and climate trends. It is especially cumbersome to supply the full derivation (provenance) of these aggregate calculations. We present a lightweight and resilient software platform, Gridderama that simplifies the calculation of climatology by exploiting the "Data-Cube" topology often present in earth observing satellite records. By using the large array storage (LAS) paradigm, Gridderama allows the analyst to more easily produce a series of aggregate climate data products at progressively coarser spatial and temporal resolutions. Furthermore, provenance tracking and extensive visualization capabilities allow the analyst to track down and correct for data problems such as missing data and outliers that may impact the scientific results.

We have developed and applied Gridderama to calculate a trend analysis of 55 Terabytes of AIRS Level 1b infrared radiances, and show statistically significant trending in the greenhouse gas absorption bands as observed by AIRS over the 2003-2012 decade. We will extend this calculation to show regional changes in CO2 concentration from AIRS over the 2003-2012 decade by using a neural network retrieval algorithm.