NS44A-01:
Aquifer-System Characterization by Integrating Data from the Subsurface and from Space, San Joaquin Valley, California, USA
Abstract:
Extensive groundwater pumping from the aquifer system in the San Joaquin Valley, California, between 1926 and 1970 caused widespread aquifer-system compaction and resultant land subsidence that locally exceeded 8 m. The importation of surface water in the early 1970s resulted in decreased pumping, recovery of water levels, and a reduced rate of subsidence in some areas. Recently, land-use changes and reductions in surface-water availability have caused pumping to increase, water levels to decline, and subsidence to recur. Reduced freeboard and flow capacity of several Federal, State, and local canals have resulted from this subsidence.Vertical land-surface changes during 2005–14 in the San Joaquin Valley were determined by using space-based [Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS)] and subsurface (extensometer) data; groundwater-level and lithologic data were used to understand and estimate properties that partly control the stress/strain response of the aquifer system. Results of the InSAR analysis indicate that two areas covering about 7,200 km2 subsided 20–540 mm during 2008–10; GPS data indicate that these rates continued through 2014. Groundwater levels (stress) and vertical land-surface changes (strain) were used to estimate preconsolidation head and aquifer system storage coefficients. Integrating lithology into the analysis indicates that in some parts of the valley, the compaction occurred primarily within quickly-equilibrating fine-grained deposits in deeper parts of the aquifer system. In other parts of the valley, anomalously fine-grained alluvial-fan deposits underlie one of the most rapidly subsiding areas, indicating the shallow sediments may also contribute to total subsidence. This information helps improve hydrologic and aquifer-system compaction models, which in turn can be used to consider land subsidence as a constraint in evaluating water-resource management options.