EP23B-3595:
Spatial Heterogeneity of Stream Water Chemistry in the Elder Creek Catchment at the Eel River Critical Zone Observatory.

Tuesday, 16 December 2014
Benjamin Michael Thurnhoffer1, Sky M Lovill1, Athena Nghiem1, Hyojin Kim2 and James K B Bishop1, (1)University of California Berkeley, Berkeley, CA, United States, (2)Pennsylvania State University Main Campus, University Park, PA, United States
Abstract:
How does stream chemistry vary with respect to discharge, flow distance, elevation, hill slope orientation, lithology, and vegetation on catchment scale? Is it possible to discern fast flowing seasonally recharged subsurface waters from long residence time waters contributing to base flow? To answer these questions, water samples were collected at ~80 locations distributed over the channel network of the (17 km2) Elder Creek catchment during surveys in May and August/September 2014. The site, located at the Angelo Coast Range Reserve near the headwaters of the South Fork of the Eel River in northern California, experiences a Mediterranean climate with warm dry summers and cold wet winters; this year (2014), our area has received less than 50% of expected precipitation and is experiencing an extreme drought. Our survey times correspond to the beginning of the dry season and late dry season, respectively. The subsurface lithology of the region almost uniform, being largely composed of argillite mudstone with intermittent areas underlain with sandstone. It is forested with Douglas fir, live and tan oaks, madrone and California bay laurel, which vary in abundance with hill-slope orientation. Due to drought, the Elder Catchment has recently experienced the effects of the nearby Lodge Lightening Complex Fire (first detection July 31 2014) and its effects may be differentiated through the continuous 1 – 3 day frequency sampling of Elder Creek water using the ISCO Gravity Filtration System (GFS; Kim et al. 2012, EST). All water samples are analyzed for dissolved major, minor, and trace solutes by Inductively Couple Plasma Mass Spectrometry and this report focuses on major solutes such as Na, K, Ca, Mg and Si; redox sensitive metals Fe and Mn; and Ba and Sr. Preliminary analysis of May 2014 data shows interesting patterns between tributaries, particularly differences between streams on north vs. south facing slopes. Concentrations of Ca, Mg, and Na decrease down slope in south facing tributaries, while they slightly increase downslope in north facing tributaries. Concentrations are relatively invariant in the Elder channel but Elder chemistry differs with respect to Na, Ca and Fe to the South Fork Eel River.