Signatures of Pacific-type orogeny in Lleyn and Anglesey areas, northwest Wales

Friday, 19 December 2014
Hisashi Asanuma1, Yoshihiro Okada1, Yusuke Sawaki1, Shinji Yamamoto2, Takafumi Hirata3 and Shigenori Maruyama1, (1)Tokyo Institute of Technology, Tokyo, Japan, (2)University of Tokyo, Bunkyo-ku, Japan, (3)Kyoto University, Division of Earth and Planetary Sciences, Kyoto, Japan
The orogeny is a fundamental process of plate tectonics, and its record is useful for understanding of ancient plate motion. Geotectonic history of British isles has been explained by collision-type orogeny accompanied by closure of Iapetus ocean. High pressure metamorphic rocks such as blueschist and eclogite characterizing Pacific-type orogeny occur in some places, but have not attracted much interests because of their smallness.

The subduction-related (Pacific-type) orogeny is characterized by contemporaneous formation of a batholith belt, a regional metamorphic belt (high P/T type) and an accretionary complex. Late Proterozoic-Cambrian (677-498 Ma) calc-alkaline volcano-plutonic complexes crop out in Lleyn and Anglesey areas, northwest Wales. The metamorphic age of high-P/T metamorphic belt in eastern Anglesey was constrained by Ar-Ar isochron age of 560-550 Ma. However, depositional age of the rocks composing accretionary complex wasn’t fully constrained due to the limited zircon U-Pb age data and vague microfossil records.

Monian Supergroup at Lleyn and Anglesey areas includes three groups; South Stack Group (Gp), New Harbour Gp and Gwna Gp. The Gwna Gp is located at the structural top and includes typical rocks of an ocean plate stratigraphy (OPS), a fundamental unit composing of an accretionary complex. We described detailed geological map and reconstructed the OPSs at some localities with careful attention to layer-parallel thrust. In order to constrain the sedimentary ages of each OPS, we collected sandstones from individual OPSs.

We determined U-Pb ages of detrital zircons from the sandstones with LA-ICP-MS at Kyoto University. We adopted the youngest age of the detrital zircons as a constraint of sedimentary age. The results indicate that sediments in Gwna Gp deposited from 623 ± 17 Ma to 535 ± 14 Ma. These are contemporary with the ages of both batholith belt and regional metamorphic belt. In addition, it became evident that structurally upper level is older than lower level. This structurally downward-younging polarity is one of the characteristics of accretionary complex. Therefore, we concluded that the accretionary complex at northwestern Wales was formed between 623 ± 17 Ma and 535 ± 14 Ma, and the subduction-related Pacific-type orogeny had formed a part of British Isles.