Mapping Amazonian Canopy Foliar Traits with Imaging Spectroscopy

Thursday, 18 December 2014: 9:00 AM
Gregory Paul Asner, Roberta Martin, Christopher Benjamin Anderson and David E Knapp, Carnegie Institution for Science, Washington, DC, United States
Spatial and temporal information on plant functional traits is lacking in ecology, which limits our understanding of how plant communities and ecosystems are changing. This problem is acute in remote tropical regions such as in Andean and Amazonian forests, where information on plant functional traits is difficult to ascertain. We used Carnegie Airborne Observatory visible-to-shortwave infrared (VSWIR) imaging spectroscopy with light detection and ranging (LiDAR) to assess the chemical composition of tropical forests along a 3000 m elevation gradient from lowland Amazonia to the Andean treeline. We calibrated and validated the retrieval of 15 canopy foliar chemicals and leaf mass per area (LMA) in 81 one-hectare field plots using a new VSWIR-LiDAR fusion approach. Remotely sensed estimates of elevational changes in forest foliar pigments, nitrogen, phosphorus, water, soluble and total carbon, cellulose and LMA were similar to those derived via laborious field survey and laboratory analysis. This new airborne approach addresses the inherent limitations and sampling biases associated with field-based studies of forest functional traits, particularly in structurally and floristically complex tropical canopies.