S11D-4373:
Estimating Earth's modal Q with epicentral stacking method

Monday, 15 December 2014
Xiaojun Chen and Jeffrey J Park, Yale University, New Haven, CT, United States
Abstract:
The attenuation rates of Earth's normal modes are the most important constraints on the anelastic state of Earth's deep interior. Yet current measurements of Earth's attenuation rates suffer from 3 sources of biases: the mode coupling effect, the beating effect, and the background noise, which together lead to significant uncertainties in the attenuation rates. In this research, we present a new technique to estimate the attenuation rates of Earth's normal modes – the epicentral stacking method. Rather than using the conventional geographical coordinate system, we instead deal with Earth's normal modes in the epicentral coordinate system, in which only 5 singlets rather than 2l+1 are excited. By stacking records from the same events at a series of time lags, we are able to recover the time-varying amplitudes of the 5 excited singlets, and thus measure their attenuation rates. The advantage of our method is that it enhances the SNR through stacking and minimizes the background noise effect, yet it avoids the beating effect problem commonly associated with the conventional multiplet stacking method by singling out the singlets. The attenuation rates measured from our epicentral stacking method seem to be reliable measurements in that: a) the measured attenuation rates are generally consistent among the 10 large events we used, except for a few events with unexplained larger attenuation rates; b) the line for the log of singlet amplitudes and time lag is very close to a straight line, suggesting an accurate estimation of attenuation rate. The Q measurements from our method are consistently lower than previous modal Q measurements, but closer to the PREM model. For example, for mode 0S25 whose Coriolis force coupling is negligible, our measured Q is between 190 to 210 depending on the event, while the PREM modal Q of 0S25 is 205, and previous modal Q measurements are as high as 242. The difference between our results and previous measurements might be due to the lower noise level we encounter after stacking, which has long been speculated to have caused the difference between modal Q and surface wave Q measurements. Overall, we believe our epicentral stacking method provides a more accurate and reliable means to measure Earth's attenuation rates.