B31G-0149:
Microtopographic and Hydrological Controls over Respiratory Efflux and Late-Season Arctic Methane Emissions

Wednesday, 17 December 2014
Eric Wilkman, Donatella Zona and Walter C Oechel, San Diego State University, San Diego, CA, United States
Abstract:
In recent years, Arctic peatlands have released approximately 35 Tg (3.5 x 1012g) of CH4 annually, corresponding to around 1/3 of the aggregate wetland CH4 fluxes and 16% of all natural emissions. As climate models increasingly suggest that current warming trends in the Arctic (4-8 °C higher annual surface air temperatures) will continue by century’s end, carbon (C) cycling in these northern climes may be further amplified. Although much has been learned in recent decades, uncertainty remains in regard to the spatial and temporal extent of CO2 and CH4 emissions from these systems.

Chamber based carbon flux measurements were gathered for three growing seasons from June 2007 to September 2013 in Barrow, Alaska to investigate the diurnal, weekly, and monthly patterns of CO2 and CH4 flux in the North American Arctic. For the 2007 and 2008 growing seasons, high temporal frequency auto-chambers (LI-8100A Automated Soil Flux System, LI-COR Biosciences) were used to gather over 18,000 individual flux measurements. From July to September 2013 an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research Inc.) was deployed in concert with this soil flux system to gather high temporal frequency soil CO2 and CH4 fluxes. Nearby eddy covariance towers provided auxiliary meteorological and environmental data, while weekly transects amassed further surficial hydrological measures (pH, thaw depth, water table).

For earlier periods of data, respiratory fluxes were partitioned into five microtopographic classes (polygon rims and troughs, low centered basins, high ridges, and flat mesic terrain). Conversely, for the later periods of data covered chamber fluxes were partitioned into three ‘habitat’ types (High, Medium, Wet) based on corresponding aboveground average water table extent.

Marked dissimilarities were noted across habitat types and microtopographic classes. In general more mesic, waterlogged regions released greater quantities of CO2 across the growing season, while intermediate (Medium) water table regimes dominated CH4 release in the fall. Additionally, temperature generally delimited CO2 release throughout the growing season, while CH4 release was strongly tied to thaw depth expansion. This large dataset thus greatly underscores the importance of microscale heterogeneity on C flux in the Arctic.