DI33B-08:
Simultaneous generation of Superpiles and Superplumes in the lower mantle
Abstract:
Seismic tomography reveals two antipodal large low shear-wave velocity provinces (LLSVP) at the base of the mantle, rising up to ~1900 km above the core-mantle boundary (CMB). A compositional distinction between the LLSVPs and the ambient mantle is supported by anti-correlation of bulk-sound and shear-wave velocity (Vs) anomalies as well as steep lateral gradients in Vs along the edges of the LLSVPs. These seismic observations however are mainly restricted to the bottom ~600 km of the mantle. Mineral-physics constraints on elastic properties of high-pressure rocks suggest that the seismic signature of these deep distinct domains (DDD) is unlikely to be caused by the presence of subducted basalt, but rather by that of primitive mantle. They further suggest that the LLSVP’s top domains (that reach from heights of ~600 km to 1900 km above the CMB) are either composed of hot basaltic or warm average-mantle material. From a geodynamical point of view, however, the former explanation appears to be more consistent with the top domain’s large widths.Here, we present a series of 2D numerical models of mantle convection with three distinct materials (representative of pyrolite, primitive and basaltic material), exploring the effects of their distinct densities and compressibilities. We find (1) that the dense primitive materials accumulate as Superpiles at the CMB, similar to the DDDs, and (2) that the moderately dense basaltic materials evolve into Superplumes sitting on top of the Superpiles, similar to the top LLSVP domains. We here refer to Superplumes as thermochemical domes that are buoyant at depth but negatively buoyant in the mid-mantle (due to excess heat and relatively low compressibility), where they stagnate. Small plumelets intermittently rise from the roofs of the Superplumes to entrain basalt that has evolved in the lower mantle and form hotspots at the surface. This prediction addresses the geochemical and geochronological record of intraplate Pacific volcanism. The predicted sub-horizontal compositional boundary between the basal Superpiles and the overlying Superplumes further provides an explanation for steep vertical gradients in Vs observed at 400-700 km height above the CMB. Such a LLSVP subdivision holds implications for the early and ongoing differentiation and thermal evolution of our planet.