SH31A-4111:
The Angular Distribution of Quiet-time ~20-300 keV Superhalo Electrons in the Solar Wind

Wednesday, 17 December 2014
Liu Yang1, Linghua Wang2, Jiansen He1, Chuan-Yi Tu1 and Zhongtian Pei1, (1)Peking University, Beijing, China, (2)Peking University, Institute of Space Physics and Applied Technology, Beijing, China
Abstract:
The angular distribution of solar wind superhalo electrons carries important information on the electron acceleration location and scattering in the interplanetary medium. Here we present a comprehensive study of the angular distribution of ~20–300 keV superhalo electrons measured at 1 AU by the WIND 3DP instrument during quiet-time periods from 1995 January through 2013 December. For quiet-time intervals, we re-bin the observed electron pitch angle distributions into the outward-traveling and inward-traveling bins, according the direction of interplanetary magnetic field (IMF). The inward-outward anisotropy of superhalo electrons at energy E is defined as A = 2(fout – fin)/(fout + fin), where fout (fin) is the average flux of outward-traveling (inward-traveling) electrons. We find that among all the ~640 quiet-time intervals, ~5% have an A > 0.1 (referred to as “outward events”), ~5% have an A < -0.1 (referred to as “inward events”), and ~90% have an |A| ≤ 0.1 (referred to as “isotropic events”). Isotropic events show no clear correlation with solar wind parameters (nSW, Vsw and Tp), IMF and solar wind turbulence spectrum. Inward and outward events also have no association with the IMF and nSW. But the occurrence ratio of outward (inward) events over all the events, α, roughly decreases (increases) with increasing VSW. Moreover, for outward (inward) events, α roughly increases with ρeTp, where ρTp is the solar wind thermal proton gyroradius that is related to the separation between the turbulence inertial and dissipation ranges. These results suggest that quite-time superhalo electrons are generally isotropic due to the wave-particle interaction in the interplanetary medium; outward-traveling (inward-traveling) superhalo electrons may come from the acceleration occurring beyond (within) 1 AU, probably by CIRs or turbulence. We will also present a case study of several quiet-time electron events with the anisotropy A increasing with the electron energy E