A33B-3178:
Non-refractory Submicron Aerosol Aging Processes in the Rural Southeastern United States

Wednesday, 17 December 2014
Basak Karakurt Cevik, Yu Jun Leong, Carlos Hernandez and Robert J Griffin, Rice University, Civil and Environmental Engineering, Houston, TX, United States
Abstract:
The Southern Oxidant and Aerosol Study (SOAS) took place over a six-week period and included ground and elevated measurements that aimed to improve the understanding of biosphere-atmosphere interactions and their impacts on air quality and climate. As part of SOAS, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the rural ground site in Centreville, AL, from 1 June to 15 July 2013. The HR-ToF-AMS provided quantitative measurement of non-refractory submicron aerosol composition and size distribution with high temporal resolution. Time series of mass concentrations of organic material, sulfate, ammonium, and nitrate (in order of average relative importance) and the changes in the concentrations of each component with respect to a photochemical airmass age metric (based on oxidation of nitrogen oxides) are reported. The relative importance of secondary ammonium and sulfate increases with values of the airmass age metric. While the contributions of organic and nitrate aerosol to total particle concentration decrease with increasing airmass age, organic aerosol concentration normalized by carbon monoxide (CO) constantly increases with age. However, the nitrate concentration normalized by CO appears relatively independent of the age metric. For a better understanding of organic aerosol processing, atomic ratio (oxygen/carbon and hydrogen/carbon) and carbon oxidation state (OSc) analyses of bulk organic aerosol are investigated.