P31A-3969:
The Geodesy of the Outer Solar System Bodies from Precise Spacecraft Tracking

Wednesday, 17 December 2014
Luciano Iess1, Sami Asmar2 and Aseel Anabtawi2, (1)Univ. La Sapienza, Roma, Italy, (2)NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Abstract:
Gravity is at the same time the main force acting on spacecraft and an essential tool to investigate the interior structure of planetary bodies. The large infrastructure of NASA’s Deep Space Network (DSN), developed to support telecommunications and navigation of deep space probes, became therefore also a crucial instrument in planetary geodesy and geophysics.

This dual role of the DSN was especially important in the Cassini mission, where the precise navigation of the spacecraft throughout the many flybys of Titan and the icy satellites of the Saturnian system was unavoidably entangled with the determination of the gravity fields and the ephemerides of those bodies. Thanks to precise range rate measurements enabled by the DSN and the onboard radio system, Cassini has been able to determine the density and the moment of inertia of Titan, and the presence of large tidal deformations indicating the presence of a global, internal, ocean. Gravity-topography correlations have also been used to infer the thickness and the rigidity of the satellite’s icy shell. Recently, Doppler data acquired during three Enceladus flybys revealed the presence of a gravity anomaly in the southern polar region that is compatible with a regional sea at a depth of about 40 km. This sea is the likely source of the Enceladus's water plumes.

Although current planetary geodesy experiments exploited tracking systems at X band (7.1-8.5 GHz), much improved range rate measurements can be attained with Ka band radio links (32.5-34 GHz), because of their larger immunity to plasma noise. This advanced system, available at the DSS 25 tracking antenna in Goldstone (CA), has been already used in the Cassini cruise phase to carry out an accurate test of general relativity, and will be exploited again by Juno in 2016 to determine the gravity field of Jupiter. Additional uses of the DSN Ka band system have been proposed in several precise geodesy experiments with future planetary missions, both with orbiters and landers.