PA13B-3912:
Tree Distributions, Subsurface Characteristics and Nitrogen Cycling

Monday, 15 December 2014
Logan Brunner, Mary Catherine Wallace and Grace Brush, Johns Hopkins University, Baltimore, MD, United States
Abstract:
This study examines the connection between vegetation and geologic, soil and hydrologic subsurface characteristics of a natural deciduous forest in Oregon Ridge Park, located in the Piedmont physiographic province in Maryland, USA.

A preliminary study showed the relationship between nitrogen cycling and four different species occurring on a coarse grained schist and a fine grained schist. Mineralization values for Liriodendon tulipifera were positive on the coarser grained substrate and negative on the fine grained substrate. Nitrification values were positive on both substrates. Mineralization and nitrification values were both positive for Quercus prinus on both the coarse and fine substrates. Mineralization values for Acer rubrum were negative on the coarse substrate and positive on the finer substrate, while mineralization for Quercus rubra was negative on the coarse substrate and positive on the fine schist. Nitrification was positive for Q. rubra on the coarse schist and both positive and negative on the fine schist.

Resistivity analyses were performed in collaboration with the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) along two perpendicular transects at the study site. This analysis provides indirect information on subsurface conductivity, with low resistivity being interpreted as subsurface water or clay. One transect crossed a valley with a first-order stream in the center, while the second transect was taken along the break and slope of the hillslope. All trees were identified and diameter at breast height (DBH) measured in sixty-three randomly located plots along both transects. A principle components analysis of all tree data showed four associations of species. The plots were labelled as to association. The position of the associations along the transects show a relationship between wet, dry and mesic associations with differences in transect resistivity.