Geochemical evidence of chemical and physical weathering of mine waste downriver from the New Idria Mercury Mine, San Benito County, California

Thursday, 18 December 2014
Rohit kumar Sharma, South Dakota School of Mines and Technology, Department of Atmospheric and Environmental Sciences, Rapid City, SD, United States and Beth Weinman, California State University Fresno, Fresno, CA, United States
Soil, river bank, and sediment samples were collected from Panoache Creek’s mine tailings and its drainages in the Mendota Pool area of California’s Central Valley. The samples were collected in order to understand the transport mechanisms of mercury and other heavy metals from the abandoned New Idria Mercury Mine (NIMM) in San Banito County, CA. It is generally thought that materials weathered from the NIMM site flow down gradient into the San Carlos Creek, which then joins Silver Creek and Panoche Creek, before finally ending up in the Valley’s Mendota pool and San Joaquin River (SJR). While we know that factors like geology, anthropogenic activities, and weathering can accelerate heavy metal accumulation at downgradient reaches (Chakravarty and Patgiri, 2009), it is unclear how this part of the SJR has responded to the mine’s abandonment since the 1970s.

To investigate how mercury and other heavy metals are weathering and being transported through this portion of the SJR drainage, gains and losses using “enrichment factors” (EF) were calculated and compared along a gradient downstream. Overall, EF of fine and bank sediments show Hg is being enriched and stored within bank sediments. For example, Hg in banks sediments are up to 5% enriched compared to the bed sediments. There is also an enrichment gain trending downstream, as sediments settling in the Mendota pool have comparatively higher EF for Hg (0.94 ppm to 6.91 ppm) relative to background concentrations. Along with other geochemical indices, which can be used to more highly resolve exactly how mine contaminants like Hg are chemically and physically being weathered, (i.e., Igeo, PLI, and CIA) the overall enrichment trend is interpreted to be the physical transport of erosion material during runoff events from the stream banks of SJR tributaries. This interpretation is also supported by depleted Sr and enriched Rb/Sr ratios, which further support physical transport as a dominating factor in contaminant enrichment along the banks of the catchment area. Combined with general trends of increasing Igeo, PLI values, and generally low CIA indices, results support Hg weathering predominantly being controlled by a combination of physical weathering, anthropogenic activities, and bank erosion, that lead to Hg mobilization and transport to downstream areas.