B51K-08:
Assessing the Impacts of Land-Use Change and Ecological Restoration on CH4 and CO2 Fluxes in the Sacramento-San Joaquin Delta, California: Findings from a Regional Network of Eddy Covariance Towers
Friday, 19 December 2014: 9:45 AM
Sara H Knox1, Cove S Sturtevant1, Patricia Y Oikawa1, Jaclyn Hatala Matthes2, Laura E Koteen3, Frank E Anderson4, Joseph G Verfaillie1 and Dennis D Baldocchi1, (1)University of California Berkeley, Dept of Environmental Science, Policy, & Management, Berkeley, CA, United States, (2)Dartmouth College, Dept. Geography and Grad Program in Ecology & Evolutionary Biology, Hanover, NH, United States, (3)University of California, Agriculture and Natural Resources, Berkeley, CA, United States, (4)USGS California Water Science Center Sacramento, Sacramento, CA, United States
Abstract:
The new generation of open-path, low power, laser spectrometers has allowed us to measure methane (CH4) fluxes continuously in remote regions and answer new and exciting questions on the spatial and temporal variability of greenhouse gas (GHG) fluxes using networks of eddy covariance (EC) towers. Our research is focused in the Sacramento-San Joaquin Delta where we have installed a regional network of flux towers to assess the impacts of land-use change and ecological restoration on CH4 and CO2 fluxes. The Delta was drained for agriculture over a century ago and has since has experienced high rates of subsidence. It is recognized that agriculture on drained peat soils in the Delta is unsustainable in the long-term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained land-use types to flooded conditions. However, flooding increases CH4 emissions. We conducted multiple years of simultaneous EC measurements at drained agricultural peatlands (a pasture, a corn field and an alfalfa field) and flooded land-use types (a rice paddy and 3 restored wetlands) to assess the impact of drained to flooded land-use change on CO2 and CH4 fluxes. Since these sites are all within 20 km of each other, they share the same basic meteorology, enabling a direct comparison of differences in the C and GHG budgets between sites. Using a multi-tower approach we found that converting drained agricultural peatlands to flooded land-use types can help reverse soil subsidence and reduce GHG emissions from the Delta. Furthermore, there is a growing interest in wetland restoration in California to generate C credits for both the voluntary C market and the state’s cap-and-trade program. However, information on GHG fluxes from restored wetlands is lacking. Using multi-year measurements of GHG fluxes from restored wetlands of varying ages, our research also aims to understand how CO2 and CH4 fluxes from restored wetlands vary during ecosystem development, determine the daily and seasonal forcings controlling these fluxes, and assess management strategies that can help minimize CH4 fluxes and maximize C uptake in restored wetlands. Our multi-year multi-site research program is beginning to answer these questions and bridge understanding between biometeorology, biogeochemistry and climate policy.