B13J-01:
Stromatolites, Metals, Statistics and Microbial Mats: A Complex Interplay
Monday, 15 December 2014: 1:40 PM
John R Spear, Colorado School of Mines, Golden, CO, United States
Abstract:
Initially thought to be relatively ‘simple’ ecosystems for study, microbial mats have long been considered ideal for any number of research questions. Microbial mats can be found in any number of environments, both natural and manmade, and are typically dependent upon the physiochemical environment for their structure, maintenance and longevity. Ultimately, these and other parameters govern community whereby a microbial mat provides overall ecosystem services to their environment. On the edge of a hotspring in Yellowstone National Park we have found an active microbial mat community that can form a laminated, lithified, accretionary structure that is likely the best example of a living and growing stromatolite. In the outfall channel of the sulfidic Stinking Spring, Utah, we have found examples of both naturally occurring laminated and floating mats where the carbon flux is controlled by abiotic degassing of CO2 rather than metabolism. δ13C-bicarbonate uptake experiments reveal an autotrophic growth rate of 0 – 0.16%/day while δ13C-acetate reveals a higher heterotrophic growth rate of 0.03 – 0.65%/day, which highlights the role of heterotrophs in these mats. Similar growth experiments on Little Hot Creek, California laminated microbial mats reveal a trend for top-down microbial growth with similar microbial taxonomy and diversity to other mat-types. Of a curious note is that incubation experiments with Little Hot Creek mats reveals the importance of particular metals in mat structure and function. Statistically, alpha- and beta-diversity metrics are often used to characterize microbial communities in such systems, but from an analysis of a wastewater treatment system, Hill diversities can better interpret the effective number of species to produce an ecologically intuitive quantity to better understand a microbial mat ecosystem.