P11A-3751:
Innovative Seismological Techniques for Investigating the Interior Structure of Venus

Monday, 15 December 2014
James A Cutts, Jet Propulsion Laboratory, Pasadena, CA, United States, David J Stevenson, California Institute of Technology, Pasadena, CA, United States and David Mimoun, ISAE, Toulouse, France
Abstract:
The formation, evolution and structure of Venus remain a mystery more than fifty years after the first visit by a robotic spacecraft. Radar images have revealed a surface that is much younger than those of the Moon, Mercury and Mars as well as a variety of enigmatic volcanic and tectonic features quite unlike those generated by plate tectonics on Earth. To understand how Venus works as a planet it is necessary to probe the interior of Venus. To accomplish this seismology must play a key role. Conventional seismology employs sensors in contact with the planetary surface but for Venus theses sensors must tolerate the Venus environment (460oC and 90 bars) for up to a year.

The dense atmosphere of Venus, which efficiently couples seismic energy into the atmosphere as infrasonic waves, enables an alternative: detection of infrasonic waves in the upper atmosphere using either high altitude balloons or orbiting spacecraft. In June 2014, the Keck Institute for Space Studies (KISS) at the California Institute of Technology sponsored a one week workshop with 30 specialists in the key techniques and technologies that can bring these technique to readiness. In this paper, we describe the key synergies with earth science drawing on methods from terrestrial seismology and oceanography and identify key technical issues that need to be solved as well as important precursor measurements that should be made.