V23D-4834:
Mantle source beneath Turrialba volcano (Costa Rica): a geochemical investigation

Tuesday, 16 December 2014
Andrea Di Piazza1, Andrea Luca Rizzo2, Franco Barberi3, Maria Luisa Carapezza1, Francesco Sortino2, Gianfilippo De Astis1 and Claudia Romano3, (1)National Institute of Geophysics and Volcanology, Roma 1, Rome, Italy, (2)National Institute of Geophysics and Volcanology, sez. Palermo, Rome, Italy, (3)Roma Tre University, Science, Rome, Italy
Abstract:
In this study we analysed rocks and noble gas composition of fluid inclusions (FIs) hosted in olivine crystals contained in a suite of eruptive products of the last 10ka of activity of Turrialba volcano, Cordillera Central, Costa Rica. The suite of analyzed rocks display a calc-alkaline affinity, ranging in composition from basaltic-andesite to dacite. Trace element patterns indicate a typical behavior of subduction-related magmas and also the clear contribution of an OIB-like signature at source. A group of andesites displays also adakite-like geochemical features, as evidenced by their constant depletion in HFSE elements. Sr isotope (0.703593 - 0.703678) and Nd isotope ratios (0.512960 - 0.512968) suggest that Turrialba magmas belong to one of the less contaminated mantle source of Central America. The 3He/4He ratio of fluid inclusions from the most mafic eruptive products (basaltic-andesites) varies from 7.86 to 8.07 Ra, while that from andesite lavas varies from 7.03 to 7.18 Ra. In order to understand the mantle source feeding Turrialba volcano, we performed a geochemical investigation on fumarolic gases of summit craters. The He isotope composition of dry gases of Turrialba volcano is characterized by extremely high R/Ra values (7.08-7.96 Ra). The highest 3He/4He ratios were measured at both West and Central Craters (7.93–7.96 Ra and 7.78–7.88 Ra, respectively), and are the highest values of the entire Central America. Despite the observed variability, the 3He/4He ratio of fumarolic gases and FIs from Turrialba volcano is well in the range of arc related volcanism (~7–8 Ra; Hilton et al., 2002), and represents the signature of a mantle wedge in which the contamination by crustal fluids is small to negligible. In addition the occurrence of recent adakite-like magmatism suggests the presence of an abnormal heating of the subducting lithosphere under Turrialba volcano, allowing even old or cold oceanic crust to melt.