Simulation of H2O-vapor and Brine-CO2 in porous media with a Lattice Boltzmann Model.

Tuesday, 16 December 2014
Marcel G Schaap, University of Arizona, Tucson, AZ, United States
This DOE-BES funded study is a collaboration between Oregon State University (led by Dr. Dorthe Wildenschild) and the University of Arizona to investigate pore-scale aspects of capillary trapping to enhance the efficiency of geological CO2 sequestration. For the purposes of this project it is important to correctly simulate the physical conditions under which super-critical CO2 will be present after injection into the host rock. This means that the LB model should be able to handle the pressures, densities, temperatures in deep geological media. A logical way of dealing with is is to combine a single-component LB model with and Equation of State (EOS) that describes the physical interrelations among pressure, temperature and density. Previously, we showed that the Peng-Robinson (PR) EOS provides an excellent fit to super-critical conditions for the pure CO2 system. However, it is necessary to consider multi-component systems as the super-critical CO2 will be present with brines of varying salinity. A natural extension to the work under is to also treat the brine with an EOS. The brine will of be in a sub-critical state and it is therefore important to find an EOS that can faithfully match the physical conditions of brine between temperatures of 300 and 400K and pressures between 7 and 30 MPa. This study will present a number of EOS alternatives that attempt to correctly capture the density of the liquid branch of the water system for relevant temperatures and pressures. We will also propose modifications that allow us to deal with different brine concentrations and compare LB modeled interfacial tension and viscosity with published data. As a secondary objective we investigate whether it is possible to match water-vapor systems under ambient surface conditions relevant for vadose zone transport. Support: DOE DE-FG02-11ER16278