GC51D-0462:
Time series analysis of thermal variation on Italian volcanic active areas by using IR satellite data

Friday, 19 December 2014
Malvina Silvestri1, Maria Fabrizia Buongiorno1 and David C Pieri2, (1)National Institute of Geophysics and Volcanology, Rome, Italy, (2)Jet Propulsion Laboratory, Earth Surface Science Group, Pasadena, CA, United States
Abstract:
To monitoring of active volcanoes the systematic acquisition of medium/high resolution thermal data and the subsequent analysis of time series may improve the capability to detect small surface temperature variation related to changes in volcanic activity level and contribute to the early warning systems. Examples on the processing of long time series based EO data of Mt Etna activity and Phlegraean Fields observation by using remote sensing techniques and at different spatial resolution data (ASTER - 90mt, AVHRR -1km, MODIS-1km, MSG SEVIRI-3km) are showed.

The use of TIR sensors with high spatial resolution offers the possibility to obtain detailed information on the areas where there are significant changes, detecting variation in fumaroles fields and summit craters before eruptions. Thanks to ASTER thermal infrared (TIR, 5 bands) regions of the electromagnetic spectrum we have obtained the surface temperature map on the volcano area. For this study we have considered the ASTER’s night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature.

Two different procedures are shown, both using the TIR high spatial resolution data: for Phlegraean Fields (active but quiescent volcano) the analysis of time series of surface temperature which may improve the capability to detect small surface temperature variation related to changes in volcanic activity level; for Mt. Etna (active volcano) a semi-automatic procedure which extract the summit area radiance values with the goal of detecting variation related to eruptive events.

The advantage of direct download of EO data by means INGV antennas even though low spatial resolution offers the possibility of a systematic data processing having a daily updating of information for prompt response and hazard mitigation. At the same time the comparison of surface temperature retrievals at different scale is an important issue for future satellite sensors.