GC21A-0508:
Evaluating Local and Regional Sources of Trace Element Contamination in a Rural Sub Estuary of the Upper Chesapeake Bay

Tuesday, 16 December 2014
Christian Krahforst1,2, Samuel Hartman3, Leslie Sherman1,4 and Karl Kehm1,5, (1)Washington College, Department of Environmental Science and Studies, Chestertown, MD, United States, (2)Washington College, Center for Environment and Society, Chestertown, MD, United States, (3)West/Rhode Riverkeeper Organization, Shady Side, MD, United States, (4)Washington College, Department of Chemistry, Chestertown, MD, United States, (5)Washington College, Department of Physics, Chestertown, MD, United States
Abstract:
The distribution of trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Sn, Ba, W, Pb and U) along with Al and Fe and other sediment characteristics in surface sediment and sediment cores from the Chester River – a sub estuary of the Chesapeake Bay located in a predominantly agricultural watershed of Maryland’s upper Eastern Shore, USA - have been determined in order to add to the understanding of contaminant transport and fate and inform management strategies designed to maintain or improve the ecological condition of estuaries. These analyses coupled with the comparison of elemental analysis of 210Pb – dated sediment cores, main stem water quality surveys, and a review of recent EPA National Coastal Condition Assessment sediment data from Chesapeake Bay provide added information about the roles of local and region scale processes on ecosystem condition. The high amount of suspended sediment in the Chester River (5-20 mg L-1) is an important factor controlling water quality conditions of the Chester River and a prime focus for environmental management of this system. Sources of suspended matter include local runoff, atmospheric deposition, local resuspension, and exchange with the Chesapeake Bay. In principle, each of these sources could be distinguished on the basis of chemical composition of surface sediment. Preliminary results from multivariate analytic models indicate that many of the elements investigated display significant covariance with Al (and other predominantly crustal signatures) which may indicate limited exogenic sources of contamination for sediments of this watershed. For example total Pb concentrations are mostly below the NOAA’s low toxic effects level and lower than the median value of NCCA data for the upper Chesapeake suggesting that sediments have significant sources from within the watershed. Further, significant higher concentrations of Sn and Cu coincide with sediment collected in or near marinas and point to localized anthropogenic sources for these elements. Elemental enrichment values relative to Al of Chester River sediments are significantly lower than observations in sediments from Chesapeake Bay overall and may indicate that local watershed management strategies may be effective for improving water and habitat quality of the Chester River.