A11N-08:
A Study of Detrainment from Deep Convection

Monday, 15 December 2014: 9:45 AM
Ian Bruce Glenn, University of Utah, Salt Lake City, UT, United States and Steven K Krueger, Univ of Utah-Meteorology, Salt Lake City, UT, United States
Abstract:
Uncertainty in the results of Global Climate Model simulations has been attributed to errors and simplifications in how parameterizations of convection coarsely represent the processes of entrainment, detrainment, and mixing between convective clouds and their environment. Using simulations of convection we studied these processes at a resolution high enough to explicitly resolve them. Two of several recently developed analysis techniques that allow insight into these processes at their appropriate scale are an Eulerian method of directly measuring entrainment and detrainment, and a Lagrangian method that uses particle trajectories to map convective mass flux over height and a cloud variable of interest. The authors of the Eulerian technique used it to show that the dynamics of shells of cold, humid air that surround shallow convective updrafts have important effects on the properties of air entrained and detrained from the updrafts. There is some evidence for the existence of such shells around deep convective updrafts as well, and that detrainment is more important than entrainment in determining the ultimate effect of the deep convection on the large scale environment. We present results from analyzing a simulation of deep convection through the Eulerian method as well as using Lagrangian particle trajectories to illustrate the role of the shell in the process of detrainment and mixing between deep convection and its environment.