H51B-0615:
The use of kernel density estimators in breakthrough curve reconstruction and advantages in risk analysis
Friday, 19 December 2014
Erica R Siirila, Daniel Fernandez-Garcia and Xavier Sanchez-Vila, Polytechnic University of Catalonia, Barcelona, Spain
Abstract:
Particle tracking (PT) techniques, often considered favorable over Eulerian techniques due to artificial smoothening in breakthrough curves (BTCs), are evaluated in a risk-driven framework. Recent work has shown that given a relatively few number of particles (np), PT methods can yield well-constructed BTCs with kernel density estimators (KDEs). This work compares KDE and non-KDE BTCs simulated as a function of np (102-108) and averaged as a function of the exposure duration, ED. Results show that regardless of BTC shape complexity, un-averaged PT BTCs show a large bias over several orders of magnitude in concentration (C) when compared to the KDE results, remarkably even when np is as low as 102. With the KDE, several orders of magnitude less np are required to obtain the same global error in BTC shape as the PT technique. PT and KDE BTCs are averaged as a function of the ED with standard and new methods incorporating the optimal h (ANA). The lowest error curve is obtained through the ANA method, especially for smaller EDs. Percent error of peak of averaged-BTCs, important in a risk framework, is approximately zero for all scenarios and all methods for np ≥105, but vary between the ANA and PT methods, when np is lower. For fewer np, the ANA solution provides a lower error fit except when C oscillations are present during a short time frame. We show that obtaining a representative average exposure concentration is reliant on an accurate representation of the BTC, especially when data is scarce.