T31A-4567:
Strain Partitioning into Dry and Wet Zones, and the Formation of Calcic Myrmekites in Syntectonic Syenites During High-T Crystallization/Deformation

Wednesday, 17 December 2014
Giuseppe Betino De Toni, Maria de Fatima Bitencourt and Lauro V. S. Nardi, UFRGS Federal University of Rio Grande du Sul, Rio Grande, Brazil
Abstract:
Myrmekites are fine intergrowths of (generally Na-rich) plagioclase and vermicular quartz developed on K-feldspar. The myrmekite-forming reaction is intimately related to deformation as it results in volume decrease and finer grainsize, thus enhancing plastic behaviour. In south Brazil, myrmekites are described in 642 Ma syntectonic syenites intrusive in a ca. 650 Ma collisional thrust pile comprised of granulite-facies gneisses. Syenites are porphyritic or fine-grained equigranular, with biotite, clinopyroxene (Cpx) and amphibole as mafic phases. They are variably deformed, and disposed in alternating m- to cm-thick layers. Within low-strain zones, well-developed magmatic foliation and lineation are marked by shape alignment of K-feldspar (Kf) and mafic minerals. Subgrains and recrystallized grains (ca. 0,5 mm) are common features at the border of Kf megacrysts, developed to different degrees. In highly deformed sites, the strain softening promoted by the inflow of late-magmatic fluids has lead to deformation partitioning into wet and dry zones, where different end-products are formed from a single syenite protolith. Within the dry zones, high-T recrystallization is abundant in both Kf and Cpx, but primary mineralogy is preserved. Within the wet zones the rock contains biotite and minor amphibole, but no Cpx. Kf megacrysts are progressively invaded by myrmekite (An38-43) mantles, especially along foliation-parallel faces. In their pressure shadows, 5mm-sized, subhedral plagioclase crystals (An44-48) containing irregular quartz inclusions are interpreted as crystallized from Ca-enriched, late-magmatic fluids which have destabilized Cpx. Large plagioclase crystals and myrmekite aggregates are further recrystallized, and the process has eventually lead to the formation of plagioclase-rich rocks restricted to m-thick bands. Deformation partitioning into dry and wet zones, and the fact that myrmekites are restricted to the latter demonstrate that fluids are the necessary triggering factor to promote mineral changes. Pervasive myrmekite formation as a consequence of deformation coupled with late-magmatic fluid flow in syntectonic environments may contribute significantly to deformation partitioning and strain softening in the lower continental crust.