Spatial gradients in stream power and the implications for lateral and downstream transport of material during the 2013 Floods in Colorado and 2011 Irene Floods in Vermont, USA

Friday, 19 December 2014
John D Gartner, Carl E Renshaw, Francis J Magilligan, Eirik M Buraas, Evan Dethier and William Brian Dade, Dartmouth College, Hanover, NH, United States
Classic approaches to understand sediment transport and channel-hillslope coupling focus on magnitudes of forces at a point location or reach. Yet often overlooked are downstream gradients in forces along a river. Here we show a physical rationale supported by field evidence that downstream spatial gradients in sediment transport capacity affect lateral exchange of material in the form of landslides, bank failures and floodplain deposition. Taking advantage of the strong signals of near-channel deposition and erosion during the record-high 2011 Irene floods in Vermont and 2013 floods in Colorado, USA, we test if these spatial gradients can predict geomorphic response in flood events. Total stream power, an indicator of total sediment transport capacity, was mapped using GIS analysis along the Saxtons River (190 km2) and West Branch of White River (112 km2) in Vermont and Fourmile Creek (20 km2) and an unnamed creek on Mt Sanitas (7 km2) in Boulder, CO. These mountainous streams exhibit reach slopes of 0.5 to > 10%, with less steep reaches interspersed among steeper reaches. Near-channel erosion and deposition were quantified along 52 river km by pre/post satellite imagery, field surveys, and, when available, differencing of pre/post topography measured by aerial LiDAR. Zones of abundant mass wasting inputs—up to 11,000 m3 per km—were generally distinct from zones of abundant floodplain deposition—up to 30,000 m3 per km. Spatial patterns indicate that zones of abundant mass wasting into the channels align approximately with zones of down-flow increasing stream power. These reaches can convey material delivered from upstream plus additional lateral inputs of sediment. Conversely, reaches of abundant lateral flux out of the channel via near-channel deposition occur predominantly where mapped total stream power declines in the down-flow direction. These reaches appear unable to convey material supplied from upstream, which induces lateral deposition. The demonstrated interaction between downstream and lateral fluxes of material provides insight on physical controls on broad-scale geomorphic processes at channel margins as well as the sources and fates of matter transported by rivers, with implications for flood recovery and long-term river management.