V11C-4734:
High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean
Abstract:
Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge.We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O/TiO2 in Lena and Gakkel basalts shows that water systematics in these rocks are completely governed by source composition, with little or no modification by mantle melting dynamics or crystal fractionation. The geochemical influence of the WVZ enriched mantle source declines with distance from Lena Trough along Gakkel Ridge.