Measuring the speed of magma ascent during explosive eruptions of Kilauea, Hawaii

Thursday, 18 December 2014: 11:35 AM
David J Ferguson, Harvard University, Earth and Planetary Sciences, Cambridge, MA, United States, Philipp Ruprecht, Lamont Doherty Earth Obs., Palisades, NY, United States, Terry A Plank, Lamont -Doherty Earth Observatory, Palisades, NY, United States, Erik H Hauri, Carnegie Inst Washington, Washington, DC, United States, Helge Martin Gonnermann, Rice University, Houston, TX, United States, Bruce F Houghton, Univ Hawaii Manoa, SOEST, Honolulu, HI, United States and Donald A Swanson, Hawaiian Volcano Observatory, Hawaii National Park, HI, United States
The size and intensity of volcanic eruptions is controlled by a combination of the physical properties of magmas and the conditions of magma ascent. At basaltic volcanoes, where relatively fluid magmas are erupted, sustained explosive eruptions vary widely in style, from Hawaiian fountains erupted 10s to 100s of meter high to large Plinian type events, involving >20 km high eruption plumes. Decompression of magmas leads to volatile saturation and bubble growth, however it remains disputed how the dynamics of shallow ascent and degassing might control this disparate eruptive behaviour, or whether factors such as the initial volatile content exert the primary control on eruption style. A key issue is that the physical conditions of magma ascent, which may significantly impact eruptive dynamics, remain largely unconstrained by observational data. Here we quantify two primary variables - decompression rates and volatile contents - for magmas from three contrasting eruptions of KÄ«lauea volcano, Hawaii, using microanalysis and modelling of volatile diffusion along small melt tubes or embayments found in olivine crystals carried by the ascending magmas. During ascent decreasing solubility causes dissolved volatiles to diffuse along the embayment towards growing bubbles at the crystal edge. By modelling the diffusion of H2O, CO2 and S we obtain decompression rates, and indirectly ascent velocities, for the rising magma. For Hawaiian style fountaining events we obtain ascent rates of 0.05-0.07 MPa s-1 (~1 m s-1), whereas for a more intense subplinian eruption we obtain a notably faster rate of 0.29 MPa s-1 (>10m s-1). The timescales of melt transport from the storage region during these eruptions varied from around 3 to 40 minutes. We find no link between pre-eruptive volatile contents and eruption intensity, rather our results suggest that the eventual size of sustained explosive basaltic eruptions is likely governed by factors affecting the ascent velocity of melts in the volcanic conduit. The observed decompression rates are consistent with measured discharge rates, and with models predicting greater magma chamber overpressure for larger eruptions. Ascent rates may also further modulate dynamic processes in the volcanic conduit, such as the flow regime and bubble expansion, and consequently eruptive intensity.