Marine Carbonate δ53Cr Values Reflect Inputs From LIP Volcanism During OAE 2

Monday, 15 December 2014
Chris E Holmden1, Andrew D Jacobson2, Bradley B Sageman2 and Matthew Hurtgen2, (1)University of Saskatchewan, Saskatoon, SK, Canada, (2)Northwestern University, Evanston, IL, United States
Cr stable isotopes record mass dependent fractionations that reflect changes in the element’s oxidation state. Weathering of igneous rocks on the continents releases Cr(III), which then reacts with manganese dioxide minerals to form Cr(VI) under oxidizing conditions. Cr(VI) is both soluble and mobile in continental weathering environments and eventually accumulates in the oceans. Laboratory experiments show that reduction of Cr(VI) causes light Cr isotopes to partition into the reduced Cr(III), which is insoluble, thus leaving the unreacted pool of soluble Cr(VI) enriched in the heavy isotopes. As Cr(VI) is the thermodynamically favoured species in oxygenated seawater, this leads to the hypothesis that drawdown of seawater Cr(VI) during ocean anoxic events should correlate with positive shifts in seawater derived Cr isotope values in marine sedimentary successions, if the fractionation factor and the various Cr input fluxes remained constant.

To test this hypothesis, we measured seawater δ53Cr values preserved in pelagic carbonate sediment deposited in the Western Interior Seaway during OAE 2. Our results show that the onset of ocean anoxia correlates with a decrease in sedimentary δ53Cr, which is opposite to the model prediction. The discrepancy may be reconciled if the sedimentation flux of light Cr isotopes into anoxic sediment was offset by an increase in the input flux of light Cr isotopes to the oceans. Eruption and weathering of the Caribbean Large Igneous Province (LIP) provides one such source.. Other studies have implicated LIP volcanism as a source of anomalously high trace metal abundances in the studied carbonates, as well as mantle-like initial Os isotope ratios in related black shales. We conclude similarly that the increased input of light Cr isotopes to the oceans during OAE 2 masked the expected isotopic response of the ocean Cr cycle to increased ocean anoxia.