Nighttime transpiration is highly variable within a tallgrass prairie community

Wednesday, 17 December 2014
Kimberly O'Keefe and Jesse B Nippert, Kansas State University, Manhattan, KS, United States
Nighttime transpiration may have significant consequences on plant functioning and earth-atmosphere water fluxes, yet little is known about how this process can vary among species or with environmental changes, particularly in grassland ecosystems. We measured leaf-level nighttime transpiration and daytime photosynthetic rates, as well as whole-plant sap flow rates on eight grass, forb and shrub species in a Kansas tallgrass prairie. Measurements were made periodically across a single growing season (May-August 2014) on three C4 grasses (Andropogon gerardii, Sorghastrum nutans and Panicum virgatum), two C3 forbs (Vernonia baldwinii and Solidago canidensis), and three C3 shrubs (Cornus drummondii, Rhus glabra and Amorpha canescens). At the leaf level, nighttime transpiration rates varied among species and across the growing season. Nighttime transpiration was greater in the three grass species compared to the forbs and shrubs early in the growing season. As the growing season progressed, nighttime transpiration increased and then decreased in all species. These results are consistent with patterns of decreasing daytime stomatal conductance and photosynthetic rates as the growing season became hotter and drier. Nighttime sap flow rates also varied among species and typically accounted for over 10% of total daily water flux at the whole-plant level. These results show that nighttime transpiration is species specific and variable at a small spatial scale. Nighttime transpiration can therefore be a significant portion of a plant water budget in a tallgrass prairie, is highly variable within a community, and is dynamic in response to changing environmental conditions. Forecasts of future ecosystem responses to a changing climate must account for plant water use and loss at night.