Effects of Coupled Structural and Diagenetic Processes on Deformation Localization and Fluid Flow Properties in Sandstone Reservoirs of the Southwestern United States

Tuesday, 16 December 2014
Sara J Elliott, Peter Eichhubl and Christopher James Landry, University of Texas at Austin, Austin, TX, United States
Fluid flow tends to be restricted perpendicular to deformation bands through the combined effects of mechanical grain size reduction, porosity loss, and preferred cementation relative to the adjacent host rock. Deformation bands that occur in association with reservoir scale faults can impact reservoir-scale fluid flow and fault seal behavior, potentially imparting a permeability anisotropy to reservoir rocks. We use a combination of Hg-intrusion porosimetry, high-resolution 2D-image analysis of pore size distributions, and detailed compositional analyses obtained from integrating petrographic and SEM-based imaging techniques, including SEM-cathodoluminescence, backscattered electron imaging, and energy-dispersive X-ray spectroscopy, to (1) assess the effects of coupled chemical and mechanical processes leading to deformation localization within various detrital compositions [Cedar Mesa, Navajo, and Entrada sandstones] and (2) to quantify the effect of these processes on single and multiphase fluid flow as a function of host rock properties, structural position, and deformation band textural and diagenetic properties. Within each sample, bands of differing kinematic properties and structural style, i.e. shear bands, shear enhanced compaction bands etc., were identified and pre-kinematic pore-filling cements, as well as syn- and post-kinematic cements including various clay minerals, were distinguished for both the host rock and associated deformation bands. Although the deformation bands display a variety of textures and diagenetic attributes, initial petrophysical results suggest that the flow properties – permeability and capillary pressure curves – of the bands in the formations studied are very similar. However, both individual and clustered deformation bands of the Navajo Sandstone contain open or partially cemented cross-cutting fractures that could act as flow pathways across the deformation bands.