SH51B-4161:
Gaussianity versus intermittency in solar system plasma turbulence
SH51B-4161:
Gaussianity versus intermittency in solar system plasma turbulence
Friday, 19 December 2014
Abstract:
Statistical properties of plasma and magnetic field fluctuations exhibit features linked with the dynamics of the targeted system and sometimes with the physical processes that are at the origin of these fluctuations. Intermittency is sometimes discussed in terms of non-Gaussianity of the Probability Distribution Functions (PDFs) of fluctuations for ranges of spatio/temporal scales. Some examples of self-similarity have been however shown for PDFs whose wings are not Gaussian. In this study we discuss intermittency in terms of non-Gaussianity as well as scale dependence of the higher order moments of PDFs, in particular the flatness. We use magnetic field and plasma data from several space missions, in the solar wind (Ulysses, Cluster, and Venus Express), and in the planetary magnetosheaths (Cluster and Venus Express). We analyze Ulysses data that satisfy a consolidated set of selection criteria able to identify "pure" fast and slow wind. We investigate Venus Express data close to the orbital apogee, in the solar wind, at 0.72 AU, and in the Venus magnetosheath. We study Cluster data in the solar wind (for time intervals not affected by planetary ions effects), and the magnetosheath. We organize our results in three solar wind data bases (one for the solar maximum, 1999-2001, two for the solar minimum, 1997-1998 and respectively, 2007-2008), and two planetary databases (one for the solar maximum, 2000-2001, that includes PDFs obtained in the terrestrial magnetosphere, and one for the solar minimum, 2007-2008, that includes PDFs obtained in the terrestrial and Venus magnetospheres and magnetosheaths). In addition to investigating the statistical properties of fluctuations for the minimum and maximum of the solar cycle we also analyze the similarities and differences between fast and slow wind. We emphasize the importance of our data survey and analysis in the context of understanding the solar wind turbulence and complexity, and the exploitation of data bases and as a first step towards developing a (virtual) laboratory for studying solar system plasma turbulence and intermittency.Research supported by the European FP7 Programme (grant agreement 313038/STORM), and a grant of the Romanian CNCS –UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.