S41B-4480:
Upper mantle and crustal P-wave attenuation beneath the North Korea region

Thursday, 18 December 2014
Michael Cleveland, George E Randall, Howard John Patton and W. Scott Phillips, Los Alamos National Laboratory, Los Alamos, NM, United States
Abstract:
Accurate estimation of the magnitude of crustal seismic sources is dependent upon a strong understanding of the anelastic P-wave attenuation in the crust and upper mantle. In this study, we estimate the crustal/upper mantle average attenuation (t*) for the region around North Korea by expanding upon methods described by Ichinose et al. [2013]. We estimate t* by modeling the observed spectra and spectral ratio of regional and teleseismic P- and pP-phases of large, deep (> 500 km) earthquakes rupturing beneath the North Korea region. We use seismograms, acquired from the IRIS data archive, from operational stations at the time of each earthquake. Because of a trade-off between the variables, we use multi-variable optimization to estimate the best-fitting corner frequency (fc) and t* for each spectrum. In addition to using a more quantitative and global approach than earlier studies, we introduce new measurement approaches enabling a better understanding of the uncertainty in the measured t* value and its trade-off with fc.