B13A-0177:
Viral Predation and Host Immunity Structure Microbial Communities in a Terrestrial Deep Subsurface, Hydraulically Fractured Shale System

Monday, 15 December 2014
Rebecca A Daly, Paula J Mouser, Ryan Trexler and Kelly C Wrighton, Ohio State University Main Campus, Columbus, OH, United States
Abstract:
Despite a growing appreciation for the ecological role of viruses in marine and gut systems, little is known about their role in the terrestrial deep (> 2000 m) subsurface. We used assembly-based metagenomics to examine the viral component in fluids from hydraulically fractured Marcellus shale gas wells. Here we reconstructed microbial and viral genomes from samples collected 7, 82, and 328 days post fracturing. Viruses accounted for 4.14%, 0.92% and 0.59% of the sample reads that mapped to the assembly. We identified 6 complete, circularized viral genomes and an additional 92 viral contigs > 5 kb with a maximum contig size of 73.6 kb. A BLAST comparison to NCBI viral genomes revealed that 85% of viral contigs had significant hits to the viral order Caudovirales, with 43% of sequences belonging to the family Siphoviridae, 38% to Myoviridae, and 12% to Podoviridae. Enrichment of Caudovirales viruses was supported by a large number of predicted proteins characteristic of tailed viruses including terminases (TerL), tape measure, tail formation, and baseplate related proteins. The viral contigs included evidence of lytic and temperate lifestyles, with the 7 day sample having the greatest number of detected lytic viruses. Notably in this sample, the most abundant virus was lytic and its inferred host, a member of the Vibrionaceae, was not detected at later time points. Analyses of CRISPR sequences (a viral and foreign DNA immune system in bacteria and archaea), linked 18 viral contigs to hosts. CRISPR linkages increased through time and all bacterial and archaeal genomes recovered in the final time point had genes for CRISPR-mediated viral defense. The majority of CRISPR sequences linked phage genomes to several Halanaerobium strains, which are the dominant and persisting members of the community inferred to be responsible for carbon and sulfur cycling in these shales. Network analysis revealed that several viruses were present in the 82 and 328 day samples; this viral persistence is consistent with concomitant temporal stability in geochemistry and microbial community composition. Our findings suggest that after a disturbance (hydraulic fracturing) viral predation and host immunity is an important controller of microbial community structure, metabolism, and thus biogeochemical cycling in the deep subsurface.