S41A-4447:
Seismic Interferometry of Cultural Noise: Body Waves Extracted from Auto and Train Traffic

Thursday, 18 December 2014
Diego Alonso Quiros, Larry D Brown and Doyeon Kim, Cornell University, Ithaca, NY, United States
Abstract:
Here we report results of two experiments designed to evaluate the utility of anthropogenic noise as a source for generating body waves via interferometry. In particular we address the suggestion that traffic noise might prove effective at producing P and S waves at frequencies and amplitudes appropriate for crustal scale refraction and reflection imaging.

The first experiment recorded routine traffic for about 10 days along a straight stretch of a rural highway between the towns of Elmira and Ithaca in upstate New York. The array was deployed along the highway using two different spacings: an inner segment with Δx ~ 25 m, bracketed between flanking segments with Δx ~ 100 m. In addition to strong surface waves, direct and reflected P waves were clearly apparent on most of the virtual shot gathers. These P-waves match the velocities of P-waves recorded from a conventional, small scale refraction survey carried out at the same site with a shotgun source and an engineering seismograph.

The second experiment was located in the Rio Grande rift near Belen New Mexico, where relatively isolated train traffic was recorded for about 6 days parallel to a busy section of the BNRF railway that bisects New Mexico. Interferometric processing of the data produced virtual shot gathers with strong surface waves, as expected, but also linear arrivals that exhibit apparent velocities similar to those reported for the shallow Tertiary-Quaternary alluvium based on the original COCORP vibroseis surveys nearby. However the virtual shot gathers derived from the train sources are more complex that those obtained from the auto noise, which we suspect is due to the extended length of the train source relative to the spread length.

Both experiments confirm that cultural noise can be used for subsurface imaging, though the cost effectiveness of this approach depends, among other factors, upon the total length of recording time needed to probe to depths of interest. They are both sources that clearly lend themselves to exploitation by the new generation of large N array technologies.